
35

Chapter 4 The SELF Language

SELF is a dynamically-typed prototype-based object-oriented language with multiple, dynamic inheritance, originally

designed by David Ungar and Randy Smith at Xerox PARC in 1986 [US87, HCC+91, UCCH91, CUCH91] as a

successor to the Smalltalk-80 programming language. Like Smalltalk, SELF is intended for exploratory programming

environments in which rapid program development and modification are primary goals. Hence SELF is dynamically-

typed, affording greater flexibility and ease of development and modification, at the cost of reduced reliability and,

given existing implementation technology, reduced run-time performance. Additionally, SELF includes the features

described in Chapter 2 as desirable in an object-oriented language: abstract data types, a pure object-oriented model

with dynamic binding on all messages (including all variable accesses), closures for user-defined control structures and

exceptions, robust primitives, and support for generic arithmetic. Those readers familiar with SELF may choose to

skim this chapter.

4.1 Basic Object Model

A SELF object consists of a set of named slots, each of which contains a reference to some other object. Some slots

may be designated as parent slots. Objects may also have SELF source code associated with them, in which case the

object is a method. To make a new object in SELF, an existing object (called the prototype) is simply cloned (shallow-

copied) to produce a new object with the same name/value pairs as the prototype.

For example, the following picture portrays several SELF objects. The bottom-left object represents a cartesian point

“instance” containing 5 slots: a parent slot named parent (identified as a parent slot by the asterisk next to the slot’s

name) containing a reference to the point traits object, two slots namedx and y containing references to integer objects,

and two slots named x: and y: that contain references to the assignment primitive method (notated using the ←
symbol and described below). A second cartesian point object lies to its right.

The top-left object labeled point traits is inherited by all cartesian point objects. It also contains a parent slot

named parent containing a reference to another object not shown in this diagram, a slot named print and + each

containing a reference to a method object.

Method objects differ from other objects only in that they have attached SELF code in addition to slots. Each method

object has a parent slot named self that is an argument slot; its contents in filled in with the receiver of the message

when the method is invoked, as described below. The + method has an additional argument slot named arg that is

filled in with the right-hand argument to the + message when the method is invoked. The two integer objects also have

their own slots, but for conciseness we omit them from this diagram.

Two other kinds of objects appear in SELF: object arrays and byte arrays. Arrays are just like normal data objects,

except that they additionally contain a variable number of array elements indexed by number instead of name. As their

parent*
x
y

x:
y: ←

3

4←

a cartesian point

. . .

print
+

parent*

point traits
x print.

(clone x: x + arg x)

’@’ print.
y print.

self* <arg>

print method

self*
arg

y: y + arg y

<arg>

<arg>

+ method

parent*
x
y

x:
y: ←

7

9.2←

another cartesian point

36

names suggest, object arrays contain elements that are arbitrary objects, while byte arrays contain only integer objects

in the range 0 to 255, but in a more compact form suitable for interacting with external character- or byte-stream based

systems. Primitive operations support fetching and storing elements of arrays as well as determining the size of an

array and cloning a new array of a particular size.

4.1.1 Object Syntax

A programmer may describe a SELF object in textual form by listing the object’s slots and its code inside parentheses.

The slots are listed between vertical bars at the beginning of the object, with the code following afterwards; either of

these components of an object may be omitted. A slot declaration begins with the slot’s name, then an asterisk if the

slot is a parent slot,* then either a left-arrow or an equal sign depending on whether or not, respectively, an assignment

slot is desired, and then an expression which is evaluated to determine the slots contents. An assignable slot initialized

to nil may be declared concisely by omitting the left-arrow and the initializer expression. Slots are separated by

periods.

For example, the cartesian point object above could be defined as follows (comments are between double quotes):

(|
parent* = traits point. “evaluates to the point traits object”

x <- 3. “left-arrow creates corresponding assignment slot”

y <- 4.

|)

This example illustrates the use of = to define a single data slot and <- to define a data slot/assignment slot pair; the

name of the assignment slot is computed by appending a colon to the name of the data slot.

The point traits object could be defined as follows:

(|
parent* = ... “code to evaluate to the parent of point traits”

print = (x print. '@' print. y print).

+ = (| :arg | (clone x: x + arg x) y: y + arg y).

|)

The print and + method objects are defined directly as contents of slots. Method objects look just like other object

declarations, except that they specify code in addition to any slots. Argument slots are prefixed with colons and may

not be initialized. SELF defines a syntactic sugar for argument slots that allows them to be written in as part of the slot

name; the + slot declaration could also have been written as follows:

+ arg = ((clone x: x + arg x) y: y + arg y).

SELF includes a few other forms for object literals, including integer and floating point literal expressions that evaluate

to the corresponding integer and floating point objects and string literals delimited by single quotes.

4.2 Message Evaluation

When a message is sent to an object (called the receiver of the message), the receiver object is scanned for a slot with

the same name as the message. If a matching slot is not found, then the contents of the object’s parent slots are searched

recursively, using SELF’s multiple inheritance rules to disambiguate any duplicate matching slots. For example, if the

x message were sent to the cartesian point object pictured above, the system would search the cartesian point for a slot

whose name is x, locating the slot referring to the 3 object. If instead the print message were sent to the cartesian

point object, the system would first scan the cartesian point object for a slot namedprint, unsuccessfully. The system

would then search each object stored in a parent slot of the cartesian point, which in this example would be the point

traits object, and the system would find the matching print slot in this parent object.

Once a matching slot is found, the object referred to by the slot is evaluated and the result is returned as the result of

the message send. An object without code evaluates to itself, and so the slot holding it acts like a variable. For example,

when sending the x message to the cartesian point, the system locates the x slot in the point, extracts its contents (the

* The current version of SELF supports prioritized parents with differing numbers of asterisks for different parent priorities. Further
details may be found in [CUCH91].

37

3 integer object), evaluates it (in this case just returning 3 again, since the 3 object contains no code and hence evaluates

to itself), and returns the result (3) as the result of the original x message.

An object with code (a method) is treated as a prototype activation record. When evaluated, the system clones the

method object, fills in the clone’s self slot with the receiver of the message, fills in the clone’s argument slots with

the arguments of the message (if any), and executes its code. For example, if the print message were sent to the

cartesian point, the system would locate the print slot in the point traits object, extract the print method object

referenced by the slot, and evaluate the method object. Evaluating the method would involve cloning the method object

to create a fresh activation record, filling in the contents of the self slot of the new activation record with the receiver

cartesian point object, and then executing the messages specified by the code associated with the print method. The

result of the last message in the print method would be returned as the result of the print message.

SELF supports assignments to data slots by associating an assignment slot with each assignable data slot. The

assignment slot contains the assignment primitive method object, which takes one argument. When the assignment

primitive is evaluated as the result of a message send, it stores its argument into the associated data slot. A data slot

with no corresponding assignment slot is called a constant or read-only slot (as opposed to an assignable data slot),

since a running program cannot change its value. For example, most parent slots are constant slots. However, SELF’s

object model allows a parent slot to be assignable just like any other slot, simply by defining its corresponding

assignment slot. Such an assignable parent slot permits an object’s inheritance to change on-the-fly at run-time, for

instance as a result of a change in the object’s state. We call such run-time changes in an object’s inheritance dynamic

inheritance, and we have found this facility to be of practical value in our SELF programming. Further information on

the uses of dynamic inheritance may be found in [UCCH91].

4.2.1 Message Syntax

SELF message syntax is much like Smalltalk-80 message syntax. Both languages define three classes of message,

distinguished syntactically:

• Unary messages. A unary message takes no arguments other than the receiver. Syntactically, a unary message

name is written after its receiver expression (in postfix form), and is distinguished from other forms of message

name by being an sequence of letters or digits that begins with a lower-case letter and does not end with a colon.

Thus x, print, and isFirstQuadrant are all valid unary message names. Unary messages have highest

precedence, and associate from left to right.

• Binary messages. A binary message takes a receiver and one argument, with the binary message name separating

the two. A binary message is easily distinguished as any sequence of punctuation characters (excluding a few

reserved sequences). Thus >, &&, =, and &^$#^ are legal binary message names. Binary messages have medium

precedence. No associativity is defined for binaries (programmers must explicitly add parenthesis to disambiguate

sequences of binary messages), except that two binary messages left-associate if they are the same binary

message. Therefore expressions like 3 + 4 + 5 are legal, with 3 + 4 being evaluated first, while expressions

like 3 + 4 * 5 are illegal and must be explicit parenthesized. Arguments are always evaluated from left to right.

parent*
x
y

x:
y: ←

3

4←

a cartesian point

. . .

print
+

parent*

point traits
x print.

(clone x: x + arg x)

’@’ print.
y print.

self* <arg>

print method

self*
arg

y: y + arg y

<arg>

<arg>

+ method

x print.
’@’ print.
y print.

self*

print activation recordclone

38

• Keyword messages. A keyword message takes a receiver and one or more arguments. Keyword message names

are unusual in that the message name is written interspersed between the arguments to the message. Each piece of

a keyword message name is a sequence of letters and digits, beginning with a letter, and ending with a colon

(unlike unary messages which do not end with a colon). To aid in limiting the number of parentheses required for

parsing, the first keyword piece must begin with a lower-case letter, while all subsequent keyword pieces must

begin with an upper-case letter. The receiver is written before the keyword message, with an argument after each

colon at the end of the keyword message pieces. The name of the message is the concatenation of the various name

pieces. Therefore, x:, ifTrue:, and ifTrue:False: are all legal keyword message names, the first two

taking one argument (and a receiver) and the third taking two arguments, while ifTrue:ifFalse: is not.

Keyword messages have lowest precedence and associate from right to left. For example, the message x
ifTrue: 5 False: 6 sends the ifTrue:False: message to the result of the x message with 5 and 6 as

arguments, while the message x ifTrue: 5 ifFalse: 6 first sends the x message, then the ifFalse:
message to 5 with 6 as an argument, and then the ifTrue: message to the result of the x message with the result

of the ifFalse: message as an argument, as if the original message were parenthesized as x ifTrue: (5
ifFalse: 6).

The code part of a method is simply a sequence of period-separated messages.

4.3 Blocks

SELF allows programmers to build their own control structures using blocks, SELF’s version of closures. A block in

SELF is an object with a slot named value that contains a special kind of method. When invoked (by sending value
to the block object), this special block method runs as a child of its lexically-enclosing activation record (the activation

record that was executing when the block object was created). A block method does not include a self parent slot,

but instead has an anonymous parent slot that refers to the lexically-enclosing activation record object; the value of

self is inherited from the enclosing method activation. These differences from “normal” methods enable blocks and

block methods to act like lexically-scoped closures; SELF uses normal inheritance to implement lexical scoping.

Syntactically, blocks are identical to other method definitions, except that they are enclosed in square brackets instead

of parentheses. In particular, variables local to a block activation record are declared as normal data slots in the slot list

of the block literal.

For example, suppose an isFirstQuadrant method were added to the point traits object. This method tests

whether both the x and y components of the receiver point are positive and if so returns the string literal '1st
quadrant'. Otherwise the string literal 'not first quadrant' is returned.

The following diagram shows the state of the system after invoking the isFirstQuadrant method and creating a

new activation record.

The block object corresponds to the block literal enclosed in square brackets in theisFirstQuadrant method. The

block’s value slot refers to a block method object with an anonymous lexical parent slot, which refers to the block’s

lexically-enclosing activation record object.

parent*
x
y

x:
y: ←

3

4←

a cartesian point

. . .

isFirstQuadrant
. . .

parent*

point traits
(x > 0) && (y > 0)

self* <arg>

isFirstQuadrant method

clone
ifTrue: [^ ‘1st quadrant’].

‘not first quadrant’

(x > 0) && (y > 0)

self*

isFirstQuadrant activation record

ifTrue: [^ ‘1st quadrant’].
‘not first quadrant’

parent*
value

a block

. . .

<lexical parent>*

block method

^ ‘1st quadrant’

39

A block method may terminate with a non-local return by prefixing the result expression with a ^ symbol (reminiscent

of an up-arrow), causing the result to be returned not to the caller of the block method (the sender of value) but to

the caller of the lexically-enclosing normal (non-block) method. Non-local returns thus have much the same effect as

a return statement in C. For example, when executing the non-local return in the isFirstQuadrant example,

the block would return not to the sender of value somewhere inside the ifTrue: user-defined control structure but

instead to the caller of the lexically-enclosing method, in this case returning the '1st quadrant' string object to

the sender of isFirstQuadrant.

4.4 Implicit Self Sends

Local variables and arguments are accessed in SELF using implicit self sends. These sends have self as the receiver

of the message but begin the search for a matching slot with the current activation record rather thanself. This search

will follow the lexical chain of activation records (following the anonymous parent slots of nested block methods).

Since arguments and local variables are simply normal slots in method prototype objects and their cloned activation

records, implicit self message sends can support argument and local variable accesses using the same mechanisms used

to access data slots and methods in “normal” objects. Since self is a parent slot of the outermost method activation

record, implicit self sends can also be used to access slots in the receiver or its ancestors.

Implicit self sends are so termed because the self receiver is elided from the message send syntax; a message without

an explicit receiver is implicitly a send to self. For example, the point + method contains the fragment x + arg
x. This code first sends the x message to self implicitly. The lookup starts with the current activation record, and

since the activation record does not contain an x slot, the system will scan the contents of the activation record’s parent

slots. The activation record’s self slot is the only parent slot, and so the system will search the contents of the self
slot, the receiver cartesian point, for an x slot. This search will be successful, and the system will evaluate the contents

of the x slot to compute the result of the x message.

The example code fragment will next send the arg message to self implicitly. Again the lookup will begin with the

current activation record, but this time the system will find a matching arg slot in the activation record. The contents

of the arg local slot are accordingly evaluated, returning the argument to the original + message send.

Implicit self messages allow the SELF syntax for local slot accesses and slot accesses in the receiver to have the same

concise syntactic expression as local, instance, and global variable accesses in Smalltalk, but with the more powerful

semantics of full message sends. In particular, code which looks like it is accessing an instance variable, and which

originally did access an instance variable, can be reused in situations in which the message actually invokes a method.

This possibility enables the SELF system to solve such thorny reuse problems as the polygon and rectangle
example from section 2.2.3 and the cartesian and polar point example to be described in section 4.6.

4.5 Primitives

Much of the real work of a SELF program is performed by primitive operations provided by the virtual machine and

implemented below the level of the language. Integer arithmetic, array accessing, and input/output are all provided via

primitives to the SELF programmer. Primitive operations are invoked with the same syntax used to send a message,

except that the message name begins with an underscore (“_”). For instance, _IntAdd: invokes the standard integer

addition primitive. Every call of a primitive operation may optionally pass in a block to be invoked if the primitive

fails by appending IfFail: to the message name and passing in the block as an additional argument. If invoked, the

block is passed an error string identifying the nature of the failure (such overflow, divide by zero, or incorrect argument

type). For example, 3 _IntAdd: 'abc' IfFail: [| :code | ...] passes a failure block in addition to

the arguments to be added; this block will be invoked with the 'badTypeError' object by the primitive since the

arguments to the primitive are not both fixed-precision integers.

Loops are implemented in SELF via the _Restart primitive. A call to _Restart transfers control back to the

beginning of the scope containing the _Restart call, creating a loop. The programmer uses a non-local return to

break out of such a loop. Programmers can combine _Restart, non-local returns, and closures to build arbitrary

user-defined looping control structures.

40

SELF uses _Restart to implement loops explicitly. Other languages such as Scheme instead perform tail-recursion

elimination to automatically transform recursion into iteration, without introducing an extra language construct

explicitly for iteration. Unfortunately, tail-recursion elimination, and more generally tail-call elimination, violates the

user’s execution and debugging model by eliminating activation records that the user expects to see. The Scheme

language definition specifies that all tail-recursive calls must be transformed into iterations, which effectively

introduces a special language mechanism for looping. In SELF, such looping code is explicit and easy to recognize,

since only _Restart creates a loop. In Scheme, on the other hand, any procedure call that happens to be tail recursive

will be transformed into an iterative loop, whether or not the programmer desired or expected it, and identifying when

a procedure call is tail-recursive can be tricky.

4.6 An Example: Cartesian and Polar Points

The figure below presents an example collection of SELF objects. The bottom objects are two-dimensional point

objects, the left ones represented using cartesian coordinates and the right ones using polar coordinates. The cartesian

point traits object is the immediate parent object shared by all cartesian point objects, and defines four methods for

interpreting cartesian points in terms of polar coordinates; the polar point traits object does the reverse for polar point

objects. The point traits object is the shared ancestor of all point objects, defining general methods for printing and

adding points, regardless of coordinate system. The point traits object inherits in turn from the topmost object in the

diagram, which defines even more general behavior, such as how to copy objects.

Sending the x message to the leftmost cartesian point object finds the x slot immediately. The contents of the slot is

the integer 3, which evaluates to itself (it has no associated code), producing 3 as the result of the x message. Sending

x to the rightmost polar point object, however, does not find a matching x slot immediately. Consequently, the object’s

parent is searched, finding the x slot defined in the polar point traits object. That x slot contains a method that computes

a polar point’s x coordinate from its rho and theta coordinates. The method gets cloned and executed, producing

the floating point result 1.25.

If the print message were sent to a point object, the print slot defined in the point traits object would be found.

The method contained in the slot prints out the point object in cartesian coordinates. If the point were represented using

cartesian coordinates, the x and y messages (implicitly sent to self) would access the corresponding data slots of the

cartesian point object. But the print method works fine even for points represented using polar coordinates: the x
and y messages would find the conversion methods defined in the polar point traits object to compute the correct x and

y values.

This example illustrates conventional SELF programming practice. Most SELF code is structured into hierarchies of

traits objects, abstract objects used to hold behavior to be inherited and refined by child objects. These traits objects

. . .

. . .

parent*
rho

theta
rho:

theta: ←

3
180
←

parent*
rho

theta
rho:

theta:

print
+ arg

parent*

parent*
x
y

x:
y: ←

7
9.2
←

parent*
x
y

x:
y:

. . .

. . .

clone . . .

a cartesian point a polar point

cartesian point traits polar point traits

point traits

general traits

rho * theta cos
rho * theta sin

(x*x + y*y) sqrt
(y / x) arctan

x print. ’@’ print. y print
(clone x: x + arg x) y: y + arg y

parent*
x
y

x:
y: ←

3
4

←

a cartesian point

parent*
rho

theta
rho:

theta: ←

2.5
60
←

a polar point

41

play a role similar to one of the roles of classes in class-based languages. Concrete objects inherit from the traits

objects, filling in any missing implementation, such as assignable data slots holding object-specific state information.

The initial concrete objects are used as prototypical instances of the abstract data type and are cloned to create new

instances.

The example also illustrates some of the challenges facing the SELF implementation. The frequency of message sends

is very high; in this print example, nearly every source token corresponds to a message send. Even instance variables

are accessed using message sends. Some other challenges facing the implementation that are not illustrated by this

short example include user-defined control structures and generic arithmetic support.

42

